100%
6120楼#
发布于:2015-12-24 10:22
|
|
6124楼#
发布于:2015-12-24 10:24
|
|
6126楼#
发布于:2015-12-24 10:24
顶而不懈,遇到好贴决不能放过
![]() 高中学生:面对问题不要害怕和逃避 寂寞主妇渴望的夜幕激情 微电极测井 厦门市原副市长蓝甫外逃去哪了?蓝甫被执行死刑了吗? 风铃敲响声声脆 鸠鹊争巢 我的婚姻摇摇欲坠 路嘉欣发片记者会秀唱功 被青峰爆料酒后狂唱歌 方舒屠洪刚离婚原因_电影演员方舒近况资料照片及于明加是方舒女儿吗? 亲情的感悟语句 女星整容可怕后遗症 赵雅芝面僵像僵尸(组图)(全文) 台女星产后变虎背熊腰 涨奶上围撑爆T恤(图) 郝云&二手玫瑰:当民谣顽主遇上摇滚老炮儿 曝姜文20岁混血女儿近照 美艳似明星(图) 演员出戏难 女观众入戏深 爱情表白句子 《父亲》上映 王太利肖央搞笑台词变口头禅 [url= http://www.mengou.net/49.html]风水宝地如何鉴定 风水宝地的特点 [/url] 分手后祝福对方的句子 公信榜乃木坂46新碟夺冠 生物股长排名第六 [url= http://www.mengou.net/98.html]门垫颜色、方位改善运势 风水命理 [/url] 妈妈这个职业 |
|
名动一方
![]() |
6131楼#
发布于:2015-12-24 10:26
[size=24px][size=18px]年k线(研判长期行情) 一、年k线的要义
1、根据k线的计算周期可将其分为:日k线、周k线、月k线、季k线、年k线。 2、年k线是以一年的第一个交易日的开盘价、最后一个交易日的收盘价、全年最高价和全年最低价来画的k线图。 3、年k线是个股属牛或属熊的分界线,又被市场称为“牛熊线”。 4、年k线常用于研判长期行情,而周k线、月k线常用于研判中期行情。 二、年线一般是指250日均线 1、在技术分析中,年线是指250日均线;在不考虑其他因素的情况下,年线代表250天的平均交易成本。 2、年线的作用主要是:用来判定大盘及个股大的趋势,也就是中长期走势的均线。 3、股指(或股价)在年线之上,同时年线又保持上行态势。 ①这时,大盘(或股价)处在牛市阶段,市场中绝大部分资金处于盈利状态,表明行情向多。 ②此时,年线可以作为买入或持股的标志。 4、股指(或股价)在年线之下,同时年线又保持下行态势。 ①这时,大盘(或股价)处在熊市阶段,市场中绝大部分资金处于被套状态,表明行情看淡。 ②此时,场内绝大多数资金处于亏损状态。 三、应用年线与20日均线选股的技巧 1、在均线形态上表现是:年线有下跌缓慢并有走平趋势,表明该股已经进入牛市。 2、20日均线刚上叉年线,表明中长期均线完全多头。 3、若股价回落到年线附近是比较好的买入点。 4、再结合其他短线抄底买入指标的指示就更好了。 四、年线战法之“旭日东升” 1、“旭日东升”的要以 ①若年线已调头向上,一般说明股价中长期趋势已反转向上,后市有望反复走高,股价即使再度跌破年线,其跌幅亦极其有限,可认为是牛市中的回档。 ②股价刚刚突破已拐头向上的年线,犹如一轮红日从海平面徐徐升起,意味着后市走势一片光明,可将这种形态称为:“旭日东升”。 2、“旭日东升”的市场意义 ①如果股价始终在年线之下滑跌,则始终不会有向上攻击的爆发力。 ②如果股价放量突破年线时,有可能成为向上转势的信号。 ③如果股价能在年线之上启稳,则转势向上的把握更大。 3、“旭日东升”形态的技术特征为:股价经过长期的回调,跌势趋于缓和,年线由持续下行到慢慢走平,最后转身向上。 ①股价在年线的压制下反复走低,并创出一个明显的低点,成交量同时萎缩,呈散兵坑状态。 ②股价创出一个低点后缓慢回升,某天放量突破年线,表明股价已确立升势,旭日开始徐徐升起,此时即可介入。 4、技术要点: ①在出现旭日东升之际逢低买入,最好在出现旭日东升的当天收盘前积极买入。 ②股价某天突然放量冲过年线并能收盘守在年线之上,旭日东升的买点就呈现在市场面前。 ③在旭日东升出现后,上攻途中出现回档时积极买入。 五、注意事项 1、在应用年线指导操作时,投资者应当注意的是:年线作为长期投资指标有准确率高的优点,但也有反应迟缓的缺点。 2、在应用年线指导操作时,还应该结合其它灵敏度较高的指标同时进行研判。 六、年k线有规律可寻 1、熊市的时间从未超过5年。 2、从未连续三年阴年k线的组合。 3、沪指基本上受支撑于15年均线。1、年线下变平,准备捕老熊。年线往上拐,回踩坚决买!深跌破年线,老熊活年半。价稳年线上,千里马亮相。 股民驿站-实战交流QQ群:85045200 1对1实战股票指导QQ:522758655 ![]() ![]() ![]() ![]() 淘..宝..店..址:https://gmyz.taobao.com 淘..宝..店..名:美人电子商务 主销:内裤,文胸,抹胸,背心,袜子,雨衣,雨伞,毛巾,浴巾,口罩,打底衫 欢迎关注收藏,不买也来逛逛踩踩场,买得多送得多。欢迎收藏关注小店。 绝对质量保证,不求利润,只赚口碑! |
名动一方
![]() |
6132楼#
发布于:2015-12-24 10:26
Contents
Preface page xi 1 Introduction 1 1.1 Preliminaries 1 1.2 Classification 3 1.3 Differential operators and the superposition principle 3 1.4 Differential equations as mathematical models 4 1.5 Associated conditions 17 1.6 Simple examples 20 1.7 Exercises 21 2 First-order equations 23 2.1 Introduction 23 2.2 Quasilinear equations 24 2.3 The method of characteristics 25 2.4 Examples of the characteristics method 30 2.5 The existence and uniqueness theorem 36 2.6 The Lagrange method 39 2.7 Conservation laws and shock waves 41 2.8 The eikonal equation 50 2.9 General nonlinear equations 52 2.10 Exercises 58 3 Second-order linear equations in two indenpendent variables 64 3.1 Introduction 64 3.2 Classification 64 3.3 Canonical form of hyperbolic equations 67 3.4 Canonical form of parabolic equations 69 3.5 Canonical form of elliptic equations 70 3.6 Exercises 73 vii viii Contents 4 The one-dimensional wave equation 76 4.1 Introduction 76 4.2 Canonical form and general solution 76 4.3 The Cauchy problem and d’Alembert’s formula 78 4.4 Domain of dependence and region of influence 82 4.5 The Cauchy problem for the nonhomogeneous wave equation 87 4.6 Exercises 93 5 The method of separation of variables 98 5.1 Introduction 98 5.2 Heat equation: homogeneous boundary condition 5.3 Separation of variables for the wave equation 109 5.4 Separation of variables for nonhomogeneous equations 114 5.5 The energy method and uniqueness 116 5.6 Further applications of the heat equation 119 5.7 Exercises 124 6 Sturm–Liouville problems and eigenfunction expansions 130 6.1 Introduction 130 6.2 The Sturm–Liouville problem 133 6.3 Inner product spaces and orthonormal systems 136 6.4 The basic properties of Sturm–Liouville eigenfunctions and eigenvalues 141 6.5 Nonhomogeneous equations 159 6.6 Nonhomogeneous boundary conditions 164 6.7 Exercises 168 7 Elliptic equations 173 7.1 Introduction 173 7.2 Basic properties of elliptic problems 173 7.3 The maximum principle 178 7.4 Applications of the maximum principle 181 7.5 Green’s identities 182 7.6 The maximum principle for the heat equation 184 7.7 Separation of variables for elliptic problems 187 7.8 Poisson’s formula 201 7.9 Exercises 204 8 Green’s functions and integral representations 208 8.1 Introduction 208 8.2 Green’s function for Dirichlet problem in the plane 209 8.3 Neumann’s function in the plane 219 8.4 The heat kernel 221 8.5 Exercises 223 Contents ix 9 Equations in high dimensions 226 9.1 Introduction 226 9.2 First-order equations 226 9.3 Classification of second-order equations 228 9.4 The wave equation in R2 and R3 234 9.5 The eigenvalue problem for the Laplace equation 242 9.6 Separation of variables for the heat equation 258 9.7 Separation of variables for the wave equation 259 9.8 Separation of variables for the Laplace equation 261 9.9 Schr¨odinger equation for the hydrogen atom 263 9.10 Musical instruments 266 9.11 Green’s functions in higher dimensions 269 9.12 Heat kernel in higher dimensions 275 9.13 Exercises 279 10 Variational methods 282 10.1 Calculus of variations 282 10.2 Function spaces and weak formulation 296 10.3 Exercises 306 11 Numerical methods 309 11.1 Introduction 309 11.2 Finite differences 311 11.3 The heat equation: explicit and implicit schemes, stability, consistency and convergence 312 11.4 Laplace equation 318 11.5 The wave equation 322 11.6 Numerical solutions of large linear algebraic systems 324 11.7 The finite elements method 329 11.8 Exercises 334 12 Solutions of odd-numbered problems 337 A.1 Trigonometric formulas 361 A.2 Integration formulas 362 A.3 Elementary ODEs 362 A.4 Differential operators in polar coordinates 363 A.5 Differential operators in spherical coordinates 363 References 364 Index 366 Preface This book presents an introduction to the theory and applications of partial differential equations (PDEs). The book is suitable for all types of basic courses on PDEs, including courses for undergraduate engineering, sciences and mathematics students, and for first-year graduate courses as well. Having taught courses on PDEs for many years to varied groups of students from engineering, science and mathematics departments, we felt the need for a textbook that is concise, clear, motivated by real examples and mathematically rigorous.We therefore wrote a book that covers the foundations of the theory of PDEs. This theory has been developed over the last 250 years to solve the most fundamental problems in engineering, physics and other sciences. Therefore we think that one should not treat PDEs as an abstract mathematical discipline; rather it is a field that is closely related to real-world problems. For this reason we strongly emphasize throughout the book the relevance of every bit of theory and every practical tool to some specific application. At the same time, we think that the modern engineer or scientist should understand the basics of PDE theory when attempting to solve specific problems that arise in applications. Therefore we took great care to create a balanced exposition of the theoretical and applied facets of PDEs. The book is flexible enough to serve as a textbook or a self-study book for a large class of readers. The first seven chapters include the core of a typical one-semester course. In fact, they also include advanced material that can be used in a graduate course. Chapters 9 and 11 include additional material that together with the first seven chapters fits into a typical curriculum of a two-semester course. In addition, Chapters 8 and 10 contain advanced material on Green’s functions and the calculus of variations. The book covers all the classical subjects, such as the separation of variables technique and Fourier’s method (Chapters 5, 6, 7, and 9), the method of characteristics (Chapters 2 and 9), and Green’s function methods (Chapter 8). At the same time we introduce the basic theorems that guarantee that the problem at xii Preface hand is well defined (Chapters 2–10), and we took care to include modern ideas such as variational methods (Chapter 10) and numerical methods (Chapter 11). The first eight chapters mainly discuss PDEs in two independent variables. Chapter 9 shows how the methods of the first eight chapters are extended and enhanced to handle PDEs in higher dimensions. Generalized and weak solutions are presented in many parts of the book. Throughout the book we illustrate the mathematical ideas and techniques by applying them to a large variety of practical problems, including heat conduction, wave propagation, acoustics, optics, solid and fluid mechanics, quantum mechanics, communication, image processing, musical instruments, and traffic flow. 湛艺 ![]() 联系QQ:526781618 淘宝旺旺:跟朝流走 有需要的欢迎联系!专业代购电子书 ebook 英文电子书代购 |
6133楼#
发布于:2015-12-24 10:26
|
|
6134楼#
发布于:2015-12-24 10:27
|
|